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Abstract

Acoustic attenuation measurements in air have been analyzed in order to estimate the second

coefficient of viscosity. Data over a temperature range of 11°C to 50°C and at relative humidities

between 6 percent and 91 percent were used. This analysis has shown that the second coefficient

of viscosity varied between 1900 and 20,000 times larger than the dynamic or first coefficient of

viscosity over the temperature and humidity range of the data. In addition, the data have shown

that the molecular relaxation effects, which are responsible for the magnitude of the second

coefficient of viscosity, place severe limits on the use of time-independent, thermodynamic

equations of state. Compressible flows containing large streamwise velocity gradients, like shock

waves, which cause significant changes in particle properties to occur during time intervals shorter

than hundredths of seconds must be modeled using dynamic equations of state. The dynamic
J

model approach has been described briefly.
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Introduction

When the stress tensor is symmetric, continuum theory limits the number of arbitrary

constitutive constants to two for a linear, isotropic material. While solid mechanics handbooks

tabulate pairs of material constants (Young's modulus and Poisson's ratio) relating stress to strain,

fluid mechanics handbooks tabulate only one constant - - dynamic viscosity - - relating stress to

rate of strain. Because many important fluid flows can either be treated as incompressible flows

or boundary layer flows, the influence of a second coefficient of viscosity on the equations of

motion can be eliminated from the formulation and the problem is avoided. However, current

research for a variety of vehicle systems in air require analyses of flow fields which are neither

incompressible nor amenable to boundary layer approximations. While limited experimental data

are available, the purpose of this work is to examine recent acoustical data in order to estimate

the magnitude of the second coefficient of viscosity in air.

Since the second coefficient of viscosity appears as a linear combination with the dynamic

viscosity in many tensor manipulations, the linear combination is often referred to as the bulk

viscosity or volume viscosity. Furthermore, since the trace of the sti'ess tensor is an invariant,

an average normal stress or pressure force is predicted for most compressible fluid flows which

occurs in addition to thermodynamic pressure. That problem is avoided when the ratio of the

second coefficient of viscosity to the dynamic viscosity is negative two thirds. In 1845, C.G.

Stokes suggested that using a second coefficient equal to -2/3_ was a convenient way to avoid

uncertainties in the meaning of pressure in a flowing fluid. Stokes _ hypothesis can be justified

for monatomic molecules like helium, but no such arguments exist for mixtures of polyatomic

molecules like air.

White 1 has provided a good review of the second coefficient of viscosity problem in fluid

mechanics. Since normal shock waves produce large velocity gradients in the direction of flow,

shock thickness measurements can be used to determine the influence of second coefficient of

viscosity. Unfortunately, shock waves produce strong gradients in all of the thermodynamic

variables and if the second coefficient of viscosity varies with temperature, the accuracy of those
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estimatesare limited. However, the early shockwave thicknessmeasurementsof Sherman2

which employedthermocouplesandposition indicatorsfor the measurements,showedthat the

secondcoefficientof viscosityin air wasa positivevalue(not equalto -2/3#).

Bulk viscouseffects in air areof major concernto acousticians.Attenuationof radiated

soundwavesis controlledfor the most part by bulk viscosity. However,becausefrequency

dependentthermophysicalpropertiesviolatethefundamentallawsof continuummechanics,the

acousticsliteratureis nearlyvoid of referencesto bulk viscouseffects. Acousticiansuse total

sound attenuation (in nepers/meter, where nepers are dimensionless) and tabulate that property.

Total sound attenuation in air varies strongly with acoustic frequency, relative humidity and

temperature. As productive engineers, acousticians have been concerned more with propagation

models than with the frequency dependent property inconsistencies.

The second coefficient of viscosity controversy may have reached maximum intensity in

1954, when Rosenhead 3 convened a meeting of some of the leading authorities in continuum

theory and fluid mechanics in an attempt to sort out the problem. A prominent contributor to

the controversy has been Truesdell, 4'5 who showed rigorously that bulk viscous effects in simple

fluids cannot vary with frequency. The stature of the scholars involved in that controversy may

have restricted the rate at which others contributed information to the subject. Goldstein, 6 was

willing to discuss the dilemma in 1972, but his publication was rather obscure.

Acousticians made major strides in unraveling the controversy in the mid 1960's. Bauer

and Roesler 7 reported on the slow rate at which mixtures of nitrogen and oxygen returned to

thermal equilibrium. The reason for slow relaxation rates could be attributed to the vibrational

degrees of freedom possessed by both oxygen and nitrogen molecules. They found that up

to 20 million collisions were required to re-equilibrate vibrationally excited molecules. Those

measurements showed that equilibrium based equations of state could not be used in mixtures

of nitrogen and oxygen for processes with characteristic frequencies in excess of a few hundred

herz. Subsequently, Bauer s and Kneser 9 developed rigorous models for these systems using

ideas from non-equilibrium thermodynamics (see deGroot and Mazurl°). While rigorous, the
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modelsarecumbersomeand demandadditional thermodynamicrelaxationdata that were not

availablefor air.

The implications of this previous work for compressible, non-boundary layer flows in air are

profound. First, if bulk viscosity fails to obey Stokes hypothesis, a great deal of computational

analysis is flawed. Second, if molecular reiaxation effects are important at frequencies higher

than a few hundred herz, simple continuum theory models are restricted severely in both space

(mean-free-path constraints) and time. Finally, attenuation data suggest that the second coefficient

of viscosity in air may be free of frequency dependent, non-equilibrium relaxation effects only

at low frequencies.

Fortunately, the situation in air may not be as bad as it sounds, which is probably why

the controversy persists. First, as will be discussed later, water vapor accelerates the return

to equilibrium of nitrogen and oxygen molecules. Hence, below altitudes of 10.5km (35,000

ft.) water vapor levels are often high enough to increase the collision-driven, upper frequency

limit to several thousand herz (see Bass et al.ll). Second, most computational fluid dynamics

codes have used artificial viscosity to control computational stability and in some cases those

adjustments may be consistent with air data. Also, as mentioned previously, incompressible

flows and boundary layer flows are not influenced by bulk viscosity, although constraints on

boundary layer approximation limits are more severe.

Recently, Marcy 12 has reported estimates of the bulk viscosity in air. He employed the

"correlations of Bass et al.tl, who used data from Zuckerwar and Meredith 13A4, to develop

estimates of bulk viscosity over a wide range of temperatures and relative humidities. This

study has employed Zuckerwar's experimental data directly to establish the accuracy of the

empirically based predictions.

The present work will start with the basic formulations from acoustics and fluid mechanics,

for the purpose of unifying the constitutive constants. Using the acoustic and fluid mechanical

interpretations, Zuckerwar's measurements have been translated into bulk viscosity data for air.

Finally, a brief discussion of non-equilibrium thermodynamic effects has been included.



Formulation

The stress tensor, o'ij is assumed related to the rate of strain tensor by:

OUk _ ]

Ouj 7IIb- xk°iJJ (1)Crij "- /-t [ 0x0_U_.+ _Xi +

where # is the dynamic viscosity, the ui are the Cartesian velocity components, 7n is the

dimensionless form of the second coefficient of viscosity and _ij is the Kronecker delta. The

Einstein summation convention is used throughout.

Since the trace of a second rank tensor is invariant, an average pressure contribution, p',

due to viscous effects is given by:

,0Uk

pt : _Crkk/3 = -_(2/3 + 711)_kXk , (2.)

or from conservation of mass, the divergence of velocity is given by:

0Uk iDp (3.)
0xk p Dt

so that viscous pressure fluctuations can be represented by

p' = u (2/3 + 7II)-_-_, (4.)

Dp is the material time derivative of density in anwhere u is the kinematic viscosity and 57

Eulerian system.

The bulk viscosity, /3, is defined by

fl _= # (2/:3 + 7II) (5.)

and the dimensional form of the second coefficient of viscosity is often designated as A (=tL-, H).

Acoustic disturbances are normally very, small compared to other fluid mechanical effects. If

consideration is given to a weak, plane acoustic wave, travelling in the x-direction, the position of

an air "particle" translates across a reference location by some amount ((x, t), where the particle



translationscanbe influencedby distancefrom theacousticsource- - sayx. Furthermore,if a

steadywavetrain is considered,the conservationof masscanbeapproximatedby

o¢
p - po : A(t) _ --- (6.)

Po Ox '

where po is the undisturbed density and p is the instantaneous density.

by:

If the speed of sound is c, acoustic pressure fluctuations, 15,are related to density fluctuations

o¢
15_ P°C2&_ -P°C2 0-"_" (7.)

The linearized conservation of momentum equation for a viscous fluid obeying Eq. (1.) can

be written in terms of local particle displacement as

(92_ 1(915 (9O'll c2 (92_ (92 ((9_)0t___= [o_+ _ _ ___+_(2+_I)_7_ _- , (8)

where variations of u and 711 with temperature have been neglected.

For an acoustic plane-wave being generated continuously at x--O,

= _oe-aXei(¢°t-kx) (9.)

satisfies the governing equations where a is called the total sound attenuation (in nepers/meter)

by acousticians. Substitution of equation (9.) into equations (7.) and (8.) yields

a i e (10.)

cv'_ X/(1 + _2)+ (1 + _2)3/2

where e = v(2 + 7II) _ / c2 (11.)

Eq.

In most acoustics applications, it is presumed that e is small so that to a good approximation,

(10.) becomes

a ... v(2 +"ill) (t2.)
w2 '2c3
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Whentheapproximationis metandtheviscositiesareconstant,it is seenthatacousticattenuation

increasesquadraticallywith frequency.In fact,a greatdealof experimentalattenuationdataare

plotted asa/f "2"where f is frequency. It should be noted that Stokes derived this relation for

-,.it=-2/3 in 1845.

Air is composed primarily of oxygen and nitrogen with variable amounts of water vapor.

Both oxygen and nitrogen are diatomic molecules with one vibrational, two rotational and three

translational degrees of freedom. On the other hand water vapor is triatomic and is classified

as an angular triatornic molecule 9. Bass et al. 11 have tabulated the various types of molecular

relaxation processes which can occur when significant populations of vibrationally excited (out

of equilibrium) molecules are present in air. Both vibrationally excited oxygen and nitrogen

molecules relax slowly in air. Surprisingly, water vapor molecules can interact with either

excited nitrogen or excited oxygen molecules to accelerate their relaxation. Unfortunately, water

vapor levels of less than 0.01% are insufficient to "catalyze" the relaxation process effectively and

hence, using the U.S. Standard Atmosphere t5 and calculating maximum water content, dry air

must be assumed at altitudes above 10,500 m (35,000 ft.). Acousticians have developed empirical

data to estimate attenuation over a range of temperature, pressure and humidity conditions and

a typical correlation is discussed subsequently.

If ¢ is used as a measure of the mole fraction of water in air, then

= (Relative Humidity in percent) x Pw/Patm (13.)

where Pw is the saturation pressure of water corresponding to the atmospheric temperature

and Patm is the atmospheric pressure. The influence of water vapor, ambient pressure and

temperature on total sound attenuation have been correlated empirically by Bass et al.tl using

o as an independent variable. When pressures are normalized using atmospheres and absolute

temperature, in degrees Kelvin, is normalized with respect to 293.15K, i.e.

= T/293.15 K, (14.)



Basset al.ll reportedtotal soundattenuationdatacorrelationsfor air, given by:

C_l 1 { 10 -11 ,_1/2 [ e-7.638/_.,:2 - _ ' 1.S3x _ + 0 -5/2 0.01278 ,,,_ +0.1069
('_',-r)" P fr, o +

e-iiI_3/_ I }fr, ,,,,+_J
t .x ) rr,._

(15.)

where

and

0.05+4, ]fr,o = P 24 + 44, 1004,k--. ¥ ¢ (16.)

fr,N = P (9 + 200¢) (17.)

which are the relaxation frequencies for oxygen and nitrogen, respectively. Hence, if O_/_: 2 or

cUf2 is a constant in an acoustical total sound attenuation plot and e, from Eq. (11), is small,

(18.)

Otherwise, Eq. (10.) and (15.) can be used to find e and

C2£

7iI = _ - 2 (19.)
f.i,)//

Equation (15.) has been used to calculate 7n, which has been compared to the experimental

data. At high altitudes, dry air can be assumed and Marcy t2 has used the data of Bass et al. 11

to calculate the second coefficient of viscosity for dry air.

Reduction of Acoustic Data

A typical total attenuation plot from Zuckerwar and Meredith 13 is shown in Figure 1. If

e, defined in Eq. (11.), is small, then from Equation (12.), acoustic attenuation, which is con-

trolled by simple continuum theory, should vary quadratically with frequency. Furthermore, as

frequency is increased, vibrational non-equilibrium effects become significant and a simple, time-

independent, continuum theory cannot be used. Hence, a straight line has been drawn through

the low frequency portion of the data, in Figure 1 showing how the quadratic approximation

fits. The appearance of noticeable vibrational non-equilibrium effects are indicated with an ar-

row where the data cease to follow the quadratic line. From those data, second coefficient of
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viscosity can be determined. The data in Table I are a summary of the results from Zuckerwar's

measurements along with a comparison of estimates of 7r[ using Eq. (15).
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Figure 1 Typical Attenuation Curve



TABLE I

Second Coefficient of Viscosity

for Air, Calculated from Zuckerwar 13

10

Experimental Conditions

Relative Error in

T P Humidity c, ..,_1o_--r_.t,., vxl05 fmax 711 emaxxl0 a Eq. 15

I 1.5°C 1.0009 atm 9.7% 37.5 1.456 m2/s 70 hz 19,900 11.1 -16%

19.6 1.0104 7.9 14.4 1.495 170 7,770 9.14 156

19.8 1.0036 65.3 5.17 1.531 410 2,730 10.6 -71

20.0 1.0138 7.1 17.6 1.494 130 9,520 9.88 134

20.7 1.0104 28.3 9.73 1.514 180 5,210 7.56 -34

20.9 1.0172 73.5 3.95 1.526 420 2,100 7.16 -71

21.1 1.0104 20.4 11.0 1.514 180 5,900 8.54 3

21.7 1.0261 35.5 7.04 1.504 400 3,820 12.1 -76

21.8 1.0145 45.8 5.83 1.527 420 3,120 10.6 -54

21.8 0.9458 91.2 3.95 1.661 480 1,940 8.20 -80

29.8 0.9744 24.2 12.5 1.662 200 6,390 11.0 -41

29.8 1.0179 38.3 7.04 1.602 320 3,730 9.88 -57

30.0 1.0118 52.1 5.17 1.625 410 2,700 9.30 -67

30.2 1.0091 46.0 5.17 1.626 490 2,700 11.1 -58

30.3 0.9934 13.7 12.5 1.627 180 6.540 9.88 43

30.7 1.0084 65.5 3.95 !.649 500 2,040 8.68 -73

39.2 0.9989 25.7 6.59 1.725 480 3,400 14.1 -21

39.4 1.0125 47.9 5.17 1.734 500 2,650 11.5 -70

39.6 1.007 9.4 20.7 1.695 130 10,900 12.0 28

39.6 1.0i32 16.5 10.5 1.693 230 5,520 10.8 7

40.0 1.0132 32.9 5.83 1.719 500 3,030 13.0 -46

49.1 1.0091 28.8 5.17 1.834 850 2,620 19.9 -37

49.8 1.007 17.4 10.1 1.821 500 5,180 22.8 -18

50.2 1.0234 6.2 20.7 1.769 180 11,000 16.8 97

It can be seen from Table I that estimated values for 7II range from 1940 at 21.8°C, 91.2%

relative humidity up to 19,900 at 11.5°C, 9.7% relative humidity. The data in Table I are plotted

as "tII vs temperature in Figure 2. Because of the extreme influence of moisture content on -: tt

at a given temperature, the measured value of relative humidity is indicated beside each data

point. In addition, the upper, dry-air limit line and lower, saturated air limit line, developed

by Marcy 12 are shown. While the table shows that Eq. (15) is not very accurate in correlating
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z n calculated from Zuckerwar and Meredith's 13 experiments, the variation of -'/u with humidity,

which covers more than two orders of magnitude at a given temperature, can produce much

larger differences than those resulting from use of Eq. (15). It is important to recognize further

that the experimental data are self consistent, showing decreases in _,n with increases in water

content, and that the data fall comfortably within the limit curves predicted by Marcy 12.

106 -

iO s

I0 4

103

97 0

Marcy12, D_ A,._..Ir

2o._0 24.2013.7_6.sO _r.,020.3k._

3s.s('_

,_._o, ,,.,O,.o%'.,_ _,.,o

10 2 w m r ! l I

10 20 30 40 SO

T,_

Figure 2 Variationof non-dimensional second coc_cient

of viscosity with temperature and relative hum!dity

When the more subtle frequency limitations indicated in Table I, are included, it should

be recognized that both the simple time independent continuum model and the implied (from

Eq. (12)) value of bulk viscosity cease to represent the flow physics fully for a variety of

unsteady flow conditions. When flow events occur in air with characteristics times on the order

of milliseconds, molecular relaxation effects must be included directly in the flow model. A

brief discussion of how relaxation effects can be included follows.



12

Thermodynamic Considerations

The data discussed thus far suggest that non-equilibrium processes occur during acoustic

excitations above a few hundred hz in ambient air. Acousticians are concerned primarily

with higher frequencies and must model relaxation processes directly. Here, non-equilibrium

is assumed to mean a process which occurs so rapidly that individual molecules do not have

time to re-establish equilibrium energy distributions over the length scales associated with the

process. Relying on irreversible thermodynamics, Bauer s formulated a dynamic equation of

state which includes relaxation effects. For the purposes of this discussion, suppose we consider

a molecule like oxygen which can exist in a rotationally excited state - - say O_. - - and a

vibrationally excited state - - 0_*. Then, the following "excitation reactions" are possible due

to collisions:

M+O2_O_+M , //12 "-- --//21 (20.)

M+O = +M , v23 = -v32 (21.)

M + 02 = O_* + M , v13 = -v31 (22.)

where M represents any colliding molecule, and the vii will be used to designate the degree

to which each of the oxygen reactions proceeds. Obviously, excitation reactions with other

molecules are also possible (see Bass et a1.11). Furthermore, when significant populations of

excited molecules are present, thermodynamic temperature ceases to be a unique quantity. In

order to develop an appropriate model for high frequency acoustic waves, shock waves or other

flows where bulk viscous effects are important, the second law of thermodynamics must be

employed. That development has been discussed thoroughly by deGroot and Mazur 1°. They

showed that the rate of entropy production, F, is given by:

[' =qi_x i -- T E JKi _xi T -FKi -- _O'iJ_xj -- _ERIAI (23.)
K=I I=1



where _ is the heat flux vector, Jr( is the diffusion flux of the Kth species, given by:

JK = PK (ffK -- if),

t3

(24.)

ILK is the thermodynamic or chemical potential of the Kth species (out of N total species), l_I(

is the body force acting on the Kth species, ryij is given by Eq. (1.), RI is the reaction rate (in

mass production rate per unit volume) of the Ith species, out of M possible reactions, and the

chemical affinity, Ab is defined by

N

AI - E UKI #K (25.)
K=I

where the uij are the degrees of reaction (indicated in Eqs. (20)-(22)). Capital letter subscripts

do not employ the Einstein summation convention.

If attention is focused on a single reaction - - say Eq. (20.) - - in a multi-component system,

. and viscous effects are ignored, it is possible to develop a dynamic energy equation model which

incorporates relaxation effects. Under the single reaction, no viscous effects assumptions, Rl =

r and all other RI are ignored. Furthermore,

N

A =_ A1 = E VK1 /-tK (26.)
k=l

Eq. (23) simplifies to:

rA
F = -m (27.)

T

with

0CI

p_._.. = vilr ' (28.)

where
N

CI = pl/P and p = E pi. (29.)

I=l

Now the vn are the degrees of reaction from species 'T' to "1" and are positive ff "1" is a

product and negative if it is a reactant. It is assumed that the Vli al_ normalized with respect

to the molecular weight of I (M0 such that

q N

,'II = -1 ,

I=1 I=q+l

N

t-'I1 = 1, and y ulx = 0,
I=l

(30.)
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wherethe vn are arranged so that reactants are indicated for I < q and products for I > q.

From Equation (28.)

p OCt
r = I = 1,2,...,N,

vI1 Ot '

we cart define a new variable, (, by

10Cz O( r
- - -, (3l.)

ui10t - Ot p

and integration yields

C(t) = c_(t) - c_(o) (32.)
/vIl

We see that for any known Cb all other Ci(t) are known when the initial distributions of CI(O)

are known. Also, we note that any null value for a vjl results in a requirement that Cj(t) =

Cj(0). Since Cj < 1 for all t, from the definition Eq. (36.),

and

[ -- CI(O) CI(O)
_<(< l<I<q

vii vi1

ct(o) < ( < 1 - c_(o)_ _ q<I<_N
Uil till

(33.)

Now from Gibbs equation,

N
#I

de = Tds - pdv + Z -T dCI,
I=l

where e is the specific internal energy, we can incorporate Eq.s (26),

differentiate with respect to time to write:

Ds 1 De p Dv A De

D-t-T Dt + T Dt T Dt

Hence, from the exact differential properties of thermodynamic variables,

f,.v S_V

(34.)

(29) and (31) and

(35.)

(36.)
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(oh) (0a) (37.)

using Maxwell relations, where h is enthalpy, a is Helmholz free energy and g is Gibbs free

energy. It is also noted that A--0 at equilibrium.

From elementary thermodynamics, an equilibrium can be determined for any gas mixture at a

prescribed state. Let (eq be the equilibrium value for ( corresponding to any pair of independent

thermodynamic variables. If we assume that the system is perturbed away from equilibrium

and that it returns to equilibrium via a constant density (specific volume) and entropy process,

we can write:

= A¢ (38.)
A _ \ 0¢ / v,s \ 0¢2} s,v

where _X( = ( - (_q. Hence, from Eq. (31)

r o¢
p Ot

(39.)

and deGroot and Mazur l° (p 34) have shown that

r _

M IA I /02e'_ eq
E/1J Aj/T = --
s=l T T \0¢-//s, v

(40.)

for a constant volume (or temperature) process. As a consequence,

0¢ l ( _2e'_ eq"- _ ZM
at pT \ c)c,- ) s,v

(41 .)

or defining

pT
rs,v -= (42.)

1{ 02_ _ eq.

we have

A¢ = A((O)e -t/r''" (43.)

This is an expression for the relaxation time required to re-equilibrate a fluid undergoing a single

excitation reaction which is not too far from equilibrium.
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Bauer8 has shown that the relaxationtimes of the type displayedin Eq. (42) can be

incorporatedin a dynamicequationof state. If it is assumedthat z = z(x,y) wherez is the

dependentthermodynamicvariable(e, h, s, g, etc.) and x and y are the independentstate

variables(x = v or - p, y = s or T) andsubscriptso areusedto indicateequilibrium states,

1 + g-/ (z- Zo)= A,y CyTxy

[() o0z + _yy ¢,xrXY_" (y - yo) (44.)+ _YY A,X

Further simplifications can be made for acoustic waves, but they do not apply to shock waves

or vortices.

Relaxation time constant measurements which could be used in a dynamic equation of

state like Eq. (44) are limited. Bauer and Roesler 7 measured relaxation constants for mixtures

of nitrogen and oxygen at 300 K. Their measurements showed that the internal temperature,

Ti, relaxed toward its equilibrium temperature, Tio (=T), for an isothermal, constant pressure

process according to:

Ti (t) - Tio = [Ti(0) - Ti.le -c--'_ t (45.)

where C_, is the steady-state, constant-pressure specific heat and C_ is the instantaneous, infinite

frequency limit, specific heat. For a mixture of 21 percent oxygen and 79 percent nitrogen, their

measurements suggest that the isothermal response constant was r ° = 0.032 s.

Adiabatic relaxation processes are of more interest than isothermal processes because an

external energy source is not generally available to maintain isothermal conditions. In that case

(see Kneser9):

Cp -_ = -_-.g Cp(Ti- Tio) - RT 1 - (46.)

where the constant pressure specific heats, C_ and C_ correspond to the instantaneous (infinite

frequency) and steady-state (zero frequency) specific heats, respectively. Furthermore, if attention

is restricted to an isentropic process, we can write9:

(p__ po) = \OP/As+rps\-_2-_jfs_-_j(p--po ) (47.)



where
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,,_ o,,-,o (48.)rps = L_p 7" /k..,p

Acousticians identify the two density derivatives as equilibrium and infinite frequency sonic

(o,) ()- 1/co2 and Op _- 1/e2
GA,, N ,s

speed quantities, where

and recognizing that P-Po is the sound pressure, _, along with incorporating Eq.

IT o]o, "'°1- 1+ P'N- po =  + fft

(47), they write:

(49.)

(6) in Eq.

(50.)

They consider the linearized form of Eq. (50), along with the inviscid momentum equation (u=O

in Eq. (8)) to be a complete set. Hence, they assume relaxation effects are controlling and

neglect bulk viscous effects in the conservation of momentum equation.

Conclusions

The analysis presented here supports the contention that molecular relaxation processes

occurring in air result in bulk viscous effects which invalidate Stokes J hypothesis. Viscous

dilatational stresses become important in compressible flows and can easily exceed viscous shear

stresses in flows with significant streamwise velocity gradients. Due to the strong influence of

moisture content on bulk viscosity, great care is required in comparing theoretical predictions

with experiment.

This work has shown that a serious concern to the aeronautics community should be the

limited range of compressible flow conditions over which time independent equations of state can

be employed. The influence of dilatational effects on pressure, along with the slow vibrational

relaxation rate for oxygen and nitrogen molecules in air, must be accounted for in dynamic

energy and momentum equation formulations.
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